References

Kanatzidis, M. (1990). Chem. Mater. 2, 353-363.

- Kanatzidis, M. & Sutorik, A. (1995). Prog. Inorg. Chem. 43, 151–265. Müller, A., Diemann, E. & Heidborn, U. (1970). Z. Anorg. Allg. Chem.
- **376**, 125–133. Müller, A., Krebs, B. & Beyer, H. (1968). Z. Naturforsch. **236**, 1537–
- 1538.
- Müller, A. & Sievert, W. (1974). Z. Anorg. Allg. Chem. 498, 251–266. Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. University of Göttingen, Germany.
- Sheldrick, G. M. (1995). *SHELXTLIPC*. Version 5.04. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stoe & Cie (1992). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.
- Sunshine, S. A., Kang, D. & Ibers, J. A. (1987). J. Am. Chem. Soc. 109, 6202-6204.

Acta Cryst. (1997). C53, 167-169

A New Polymorph of Li₄P₂O₇

Abdelaali Daidouh,^a Maria L. Veiga,^a Carlos Pico^a and Martin Martinez-Ripoll^b

^aDepartamento de Quimica Inorganica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain, and ^bDepartamento de Cristalografia, Instituto de Quimica-Fisica Rocasolano-CSIC, Serrano 119, E-28006 Madrid, Spain. E-mail: xmartin@roca.csic.es

(Received 11 July 1996; accepted 24 September 1996)

Abstract

The purpose of the present paper is to report the crystal structure of a new phase of tetralithium diphosphate identified by single-crystal X-ray diffraction. The structure consists of layers built from Li–O tetrahedra and pyrophosphate groups connected to each other through edges and vertices.

Comment

A tetralithium diphosphate obtained by hydrothermal treatment at 1000 atm (1 atm = 101 325 Pa) for 100 h with four formula units of $\text{Li}_4\text{P}_2\text{O}_7$ in a $P2_1/n$ cell of dimensions a = 5.190 (2), b = 13.902 (3), c = 7.901 (3) Å, $\beta = 89.97$ (3)° was described recently (Yakubovich & Mel'nikov, 1994). The structure was described as the first lithium phosphate structure containing diphosphate groups formed by vertex-sharing PO₄ tetrahedra (see also Wenger & Armbruster, 1991; Tien & Hummel, 1961; Keffer, Mighell, Mauer, Swanson & Block, 1967; Averbuch-Pouchot & Durif, 1986). Comparison of the present structure with that described by Yakubovich & Mel'nikov (1994) is not possible as the published coordinates of the latter appear to contain errors.

The new phase reported here (Fig. 1) can be described in terms of P_2O_7 and LiO_4 units. The pyrophosphate groups (lower right-hand side of Fig. 1), built up from two PO₄ tetrahedra sharing a vertex, show typical geometry with two long P—O bonds [P1—O1 1.622 (1) and P2—O1 1.626 (1) Å] corresponding to the P—O— P bridge and three shorter P—O bonds in the range 1.504 (1) to 1.527 (1) Å (Leclaire, Benmoussa, Borel, Grandin & Raveau, 1988; Constentin, Borel, Grandin, Leclaire & Raveau, 1990). The LiO₄ tetrahedra are highly distorted with Li—O distances ranging from

Fig. 1. Projection of the structure on the *ab* plane showing the atom labels. Displacement ellipsoids are represented at the 50% probability level. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 2 - z; (iv) 2 - x, 1 - y, 1 - z; (vii) 1 - x, -y, 1 - z; (viii) x, 1 + y, z; (ix) x, 1 + y, 1 + z; (xii) x, y, 1 + z.

Fig. 2. The structure as drawn along the *b* axis of the pseudo monoclinic *A*-centred cell. All possible twofold axes appearing along **b** are destroyed by the relative situation of the P2—O5 and Li2—O6 bonds around them. See, for instance, the pseudo-twofold axis perpendicular to the eight-membered rings formed by the labelled atoms.

Acta Crystallographica Section C ISSN 0108-2701 © 1997 Pl P2

01

02

03 04

Li2 Li3

Li4

1.864 (3) to 2.104 (3) Å and O-Li-O angles in the range 69.7 (1)-130.8 (2)°. All of the outliers are around Li2, as this Li-O tetrahedron shares an edge with the PO₄ unit around P1. The O atoms O1, O2, O5 and O6 are three-coordinate and, as expected, show shorter bonds (Leclaire, Chardon, Grandin, Borel & Raveau, 1994) than those which are four-coordinate (O3, O4 and O7; the fourth bond is not shown in Fig. 1 for clarity).

The LiO₄ units share common edges (tetrahedra around Li1, Li4 and Li2, Li3) or vertices (tetrahedra around Li1, Li2 and Li3, Li4) and form eight-sided rings around the several pseudo-twofold axes of the pseudomonoclinic A-centred cell in which this structure can also be described (see also below and Fig. 2). These rings build parallel infinite chains along the a axis held together by the pyrophosphate units.

Experimental

Crystals of Li₄P₂O₇ were isolated as a minor product from a mixture of nominal composition Li₂VP₂O_x. A mixture of Li₂CO₃, (NH₄)₂HPO₄ and NH₄VO₃ in the molar ratio 1:2:1 was heated to 673 K in order to eliminate CO₂, NH₃ and H₂O. The product was then finely ground and heated in a platinum crucible to 923 K for 24 h, cooled to 673 K at a rate of 3 K h⁻¹ and finally quenched to room temperature.

Crystal data

Li ₄ P ₂ O ₇ $M_r = 201.70$ Triclinic $P\overline{1}$ a = 8.5613 (4) Å b = 7.1100 (3) Å c = 5.18510 (10) Å $\alpha = 111.441 (2)^{\circ}$ $\beta = 89.986 (3)^{\circ}$ $\gamma = 103.065 (4)^{\circ}$ $V = 284.99 (2) Å^{3}$ Z = 2	Mo $K\alpha$ radiation $\lambda = 0.7107$ Å Cell parameters from 42 reflections $\theta = 10-20^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.3 \times 0.2 \times 0.2 \text{ mm}$ Colourless
$D_x = 2.350 \text{ Mg m}^{-3}$	
D_m not measured	
Data collection	
CAD-4 diffractometer	$R_{\rm int} = 0.0102$
$\omega/2\theta$ scans	$\theta_{\rm max} = 39.76^{\circ}$
Absorption correction:	$h = 0 \rightarrow 15$
ψ scalis (Norm, Filmps & Mathews 1968)	$k = -12 \rightarrow 12$ $l = -9 \rightarrow 9$
$T_{\rm min} = 0.726$ $T_{\rm max} = 0.744$	2 standard reflections
3603 measured reflections	frequency: 90 min
3457 independent reflections	intensity decay: 0.4%
3262 reflections with	• •
$I > 2\sigma(I)$	

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.590 \ {\rm e} \ {\rm \AA}^{-3}$ $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.095$ $\Delta \rho_{\rm min} = -0.832 \ {\rm e} \ {\rm \AA}^{-3}$

S = 1.340	Extinction correction: none
3457 reflections	Scattering factors from
118 parameters	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.0333P)^2]$	Crystallography (Vol. C)
+ 0.2635P]	
where $P = (F_o^2 + 2F_c^2)/3$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

х	у	z	U_{eq}
0.84610(3)	0.22169 (4)	0.43831 (5)	0.00620 (6)
0.63094 (3)	-0.21404 (4)	0.21355 (5)	0.00621 (6)
0.68370 (10)	0.03788 (12)	0.3082 (2)	0.0113(1)
0.87523 (11)	0.25929 (15)	0.7411 (2)	0.0119(1)
0.79383 (10)	0.39768 (12)	0.3897 (2)	0.0098(1)
0.98189 (10)	0.15070(13)	0.2699 (2)	0.0094 (1)
0.62180(11)	-0.2606 (2)	0.4757 (2)	0.0125(1)
0.47213 (10)	-0.26965 (14)	0.0469 (2)	0.0112(1)
0.76253 (10)	-0.29714 (13)	0.0411 (2)	0.0093 (1)
0.7914 (3)	0.6731 (4)	0.6444 (5)	0.0127 (4)
0.4520 (4)	0.7551 (6)	0.7016 (7)	0.0249 (6)
0.7543 (3)	0.4118 (4)	1.0161 (5)	0.0129 (4)
0.9882 (3)	0.8541 (4)	1.1100 (5)	0.0125 (4)

Table 2. Selected geometric parameters (Å, °)

	0	I	(==)
P1	1.504 (1)	Li1—07 ¹¹¹	2.011 (3)
P104	1.520(1)	Li2-051	1.864 (3)
P1-03	1.521 (1)	Li2—O6 ⁱⁱⁱ	1.874 (3)
P1-01	1.622 (1)	Li2—O1 ^{iv}	2.085 (3)
P2-06	1.503 (1)	Li2—O3 ^{iv}	2.104 (3)
P2-05	1.510(1)	Li3—06 ^v	1.939 (3)
P2—07	1.527 (1)	Li3—O3 ^{vi}	2.009 (3)
P201	1.626(1)	Li3—07 ⁱⁱⁱ	2.011 (3)
O2-Li3	1.912 (3)	Li4—O2 ^{vii}	1.870(2)
O3—Li1	1.925 (3)	Li4—07 ⁱⁱⁱ	1.949 (3)
Li1—05 ⁱ	1.925 (3)	Li4—O4 ⁱⁱ	1.975 (3)
LiI—O4 ⁱⁱ	2.007 (3)	Li4—O4 ⁱⁱⁱ	1.977 (3)
O2—P1—O4	112.71 (5)	05'-Li2-06 ⁱⁱⁱ	120.4 (2)
O2P1O3	113.45 (5)	05'—Li2—O1"	115.6 (2)
04—P1—03	114.49 (5)	06 ⁱⁱⁱ Li2O1 ^{iv}	114.5 (2)
O2-P1-O1	108.70 (5)	05'Li2-03 ^{iv}	130.8 (2)
04P101	107.08 (5)	O6 ⁱⁱⁱ —Li2—O3 ^{iv}	95.5(1)
03—P1—01	99.18 (5)	Ol ^{iv} —Li2—O3 ^{iv}	69.7 (1)
O6-P2-O5	114.86 (5)	O2—Li3—O6 ^v	111.7 (1)
O6-P2-07	113.69 (5)	02—Li3—03 ^{vi}	112.7(1)
O5—P2—O7	111.59 (5)	06 ^v —Li3—03 ^{vi}	96.7 (1)
06-P2-01	102.26 (5)	02—Li3—07 ⁱⁱⁱ	116.1(1)
O5-P2-01	107.19 (5)	06 ^v Li307 ⁱⁱⁱ	105.6(1)
07-P2-01	106.20 (5)	03 ^{vi} -Li3-07 ⁱⁱⁱ	112.6(1)
O5 ¹ —Li1—O3	103.1 (1)	02 ^{vii} —Li4—07 ⁱⁱⁱ	115.0(1)
O5 ¹ —Li1—O4 ¹¹	122.7 (1)	O2 ^{vii} —Li4—O4 ⁱⁱ	117.6(1)
03-Li1-04 ⁱⁱ	108.5 (1)	07 ¹¹¹ —Li4—O4 ¹¹	97.3 (1)
05'Li107"	113.3 (1)	O2 ^{vii} —Li4—O4 ⁱⁱⁱ	123.5(1)
03—Li1—07 ^m	115.6(1)	O7 ¹¹¹ —Li4—O4 ¹¹¹	104.3 (1)
O4 ^u —Li1—O7 ⁱⁱⁱ	94.2 (1)	04"-Li404"	94.6 (1)
o		• • · · · · · ·	• • /•

Symmetry codes: (i)
$$x$$
, $1+y$, z ; (ii) $2-x$, $1-y$, $1-z$; (iii) x , $1+y$, $1+z$; (iv) $1-x$, $1-y$, $1-z$; (v) $1-x$, $-y$, $1-z$; (vi) x , y , $1+z$; (vii) $2-x$, $1-y$, $2-z$.

Metrically speaking, the only axis which seems to be maintained between our structure and the $P2_1/n$ structure of Yakubovich & Mel'nikov (1994) is the a axis, which also corresponds to a pseudo-twofold axis of an A-centred cell in which our $P\bar{1}$ cell can be metrically transformed using A = a, B = -c, C = 2b + c, with dimensions a = 8.56, b = 5.18, c= 13.23 Å and β = 104°. This pseudo-monoclinic cell gives a distribution of intensities very different from the expected 2/msymmetry and, if one plots the $P\bar{1}$ structure on that cell, only pseudo-twofold axes appear (see Fig. 2).

The structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares techniques.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: LSUCRE (Appleman, 1996). Data reduction: XRAY80 (Stewart, 1980). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

This work was supported by DGICYT (PB92-0214) and CICYT (MAT94-0790) projects.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1158). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Appleman, D. E. (1996). LSUCRE. US Geological Survey, Washington DC, USA. Unpublished.

- Averbuch-Pouchot, M. T. & Durif, A. (1986). Acta Cryst. C42, 129-131.
- Constentin, G., Borel, M. M., Grandin, A., Leclaire, A. & Raveau, B. (1990). J. Solid State Chem. 89, 83-87.
- Enraf-Nonius (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
- Keffer, C., Mighell, A., Mauer, F., Swanson, H. & Block, S. (1967). *Inorg. Chem.* 6, 119–125.
- Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J. Solid. State Chem. 77, 299–305.
- Leclaire, A., Chardon, J., Grandin, A., Borel, M. M. & Raveau, B. (1994). J. Solid. State Chem. 108, 291–298.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stewart, J. M. (1980). Editor. *The XRAY System of Crystallographic Programs*. Computer Science Center, University of Maryland, College Park, Maryland, USA.
- Tien, T. Y. & Hummel, F. A. (1961). J. Am. Ceram. Soc. 44, 206-208.
- Wenger, M. & Armbruster, T. (1991). Eur. J. Mineral. 3, 387-399.
- Yakubovich, O. V. & Mel'nikov, O. K. (1994). Kristallografiya, 39, 815-820.